Int. J. Solids Structures, 1969, Vol. 5, pp. 533 to 548. Pergamon Press. Printed in Great Britain

THE STRAIN RATE BEHAVIOR OF IRON IN PURE SHEAR*

Janusz KLEPACZKOYT
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Abstract—An experimental study of the strain rate behavior of technically pure iron in pure shear is reported
in this work. As is well known, most experimental results have been obtained from tension or compression tests;
few results on strain rate behavior in pure shear.

Furthermore, dynamic tests on thin tubular specimens show several advantages over tension or compression
tests.

Neglecting strain rate history effects the surface t = (¢, n) has been experimentally obtained, where 7 is the
shear stress, ¢ and n are the shear strain and strain rate respectively. This surface was obtained over the following
ranges of straim and strainrate 0 < ¢ < 042; 1x 10 %sec™! <7 < 1x10*sec™'.

In addition, a comparison between the effect of strain rate in pure shear, tension and compression tests has
been carried out. This comparison enables preliminary data on the strain rate behavior in biaxial states of stress
to be obtained.

Finally, the basic assumptions of the visco—plasticity theory for complex states of stress have been examined
in the light of this experimental evidence.

1. INTRODUCTION

MucH experimental work has been published to support the idea that iron and mild
steel are extremely rate sensitive materials. However, the majority of these results have
been obtained from tension or compression tests, and there are few results from pure shear
tests. Experiments performed under conditions of pure shear can take the form of torsional
tests on thin tubular specimens. This type of experiment has been reported, for example,
by Klepaczko [7] on an investigation of strain rate effects in aluminum, and also in the
work of Bennet and Sinclair [1] on the investigation of lower and upper yield limits as a
function of loading time and temperature.

Dynamical investigations using thin tubular torsional specimens avoid many of the
difficulties which are characteristic of tension or compression tests. In torsional tests
there are no lateral inertia effects. It is well known that lateral inertia effects may produce,
for example, a certain amount of error in the interpretation of strain hardening curves in
the split Hopkinson pressure bar technique. Also, in torsional tests the cross section of a
deformed specimen is constant, and the recorded strain hardening curve is at once in true
coordinates, i.e. true stress vs. true strain.

On the other hand, the shear stress, 7, and the shear strain, y, play an important role in
all yield conditions for complex stress systems. Since rate dependence has been introduced
into certain plasticity conditions, the investigation of the dynamic plastic behavior in pure
shear is very important.
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In addition, comparison of dynamic strain hardening curves obtained from pure shear
tests with those obtained from tension or compression provide preliminary data on strain
rate dependence for complex stress systems.

The aim of this work was to investigate the strain rate sensitivity of technically pure
iron over the widest possible range of strain rates, and to compare the results with existing
theories describing this phenomenon.

2. EXPERIMENTAL TECHNIQUE

All experiments were performed using thin tubular specimens with the following
dimensions: outer diameter of the tubular part D = 13 mm, the length of this part
I, = 10 mm, and wall thickness y = 0-5 mm. Specimens were machined from technically
pure iron of 0-05%, carbon content. After machining, all specimens were annealed in a
vacuum furnace for 2 hr at 850°C. Specimens prepared in this manner were twisted at
different strain rates by means of a special torsional testing machine. This machine has been
used in investigations over a lower strain rate y. For the highest strain rates (of the order
of 1 x 10? sec ™ 1), a new device for the dynamical torsional tests was used. This device has
been described by Klepaczko [6]. The torsional testing machine, as well as the dynamic
testing arrangement, were equipped with suitable measuring devices for continuous record-
ing of the torque and the angle of twist as functions of time.

Strain hardening curves relating shear stress, 7, to the shear strain, ¢ (where ¢ is obtained
from ¢ = tan 9, y being the angle of shear strain), were obtained from oscillograph records,
taken at different strain rates n = d¢/dt. In the present investigation, the following magni-
tudes of strain rate n were used: n, = 1'17x10 3 sec™?; 5, = 1-31x 10" *sec™!;
N3 = 277x10"3sec™t;n, = 285x 1072 sec™ ;55 = 44 x 107 sec™ !, and for the dynam-
ical testing arrangement #,,,, =~ 55sec™'. The ratio of the highest strain rate to the lowest
one reaches the value

x = Tma 47 % 108,
m

For each of the six values of strain rate given above, three or four tests were performed
and the strain hardening curves for each strain rate were obtained by averaging.

3. EXPERIMENTAL RESULTS AND DISCUSSION

In general, attempts to describe the rate dependent behavior of metals have used data
obtained at constant or nearly constant strain rates. Thus, in constitutive equations so
obtained the strain rate is treated as an independent variable, while in tests it is a parameter.
Since it neglects strain rate history effects, this type of mathematical description of strain
rate behavior may be treated as a first approach. A number of strain rate history effects
for mild steel and aluminum have been discussed in the works of Klepaczko {8], and also
[7] and [9].

In the remainder of this work strain rate history effects will be neglected, and all inter-
pretations of experimental results will be performed from this point of view.
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Several averaged strain hardening curves t = (¢, n), n = constant, for different strain

rates have been obtained ; these curves are shown in Fig. 1, which clearly indicates that the
iron investigated here is extremely rate sensitive. The intensive strain rate dependence is
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F1G. 1. Averaged strain hardening curves T = 7{¢, ), # = const., obtained in pure shear. Numbers at
the points of curve 1, f,. ~ 55sec™ !, denote time in msec.

noted for upper yield limits, and stress differences between upper and lower yield points
decrease as the strain rates decrease. At the value of strain rate # = 1-17 x 10" 5sec ™! the
upper yield limit disappears completely, but the entire strain hardening curve is higher
than the two curves obtained at two higher strain rates, namely for 7 = 1-31 x 10" *sec™!
and 7 = 2:77 x 1073 sec ™ !. For this reason the strain hardening curve of the lowest strain
rate has been denoted in Fig. 1 by the black points. It is interesting to note that the curve
obtained at the lowest strain rate shows a lower strain hardening rate dt/0¢ than the other
curves. Due to this fact specimens tested at the lowest strain rate lost stability earlier (at
lower strains) than is observed for higher strain rates.

As has been mentioned, strain hardening curves obtained in this manner constitute a
surface © = 1(¢, #); of course, in this case the strain rate history effects are neglected.
Cross sections of the surface T = t(¢, n) obtained for different values of strain, ¢ = constant
are shown in Fig. 2. The black circles denote stresses at the upper yield points, 1, = t4(y),
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FiG. 2. Cross sections of the surface 7 = (¢, n) obtained for different values of strain. The vertical
dashed lines denote values of applied strain rates.

and the cross section at the lower yield limit is denoted by t,, = /(). The spreading of
points indicates that the average strain hardening curve for # = 277 x 10~ ? sec ™! should
be a little higher, about 0-6 kg/mm?, and the curve for n = 2:85x 10~ 2 sec ™! a little lower,
about 0-8 kg/mm?. The strain hardening curve for #,,,, = 55sec™ ! has not been obtained
at exactly constant strain rate, and for this reason the points of this curve do not lie in one
section # = constant.

It is interesting to note that the minimum of the flow stress appears near the strain rate
region of n ~ 1 x10"*sec™!. This value of strain rate is commonly accepted as the
“statical” one. A similar minimum has been experimentally observed many times, but
usually for higher strain rates and higher temperatures. For example, Manjoine [14]
reported such a minimum for a mild steel at a strain rate in tension of ¢ = 1 sec™ ! at temper-
aturet = 200°C ; however, for t = 400°C this minimum was observed for ¢ = 3 x 10% sec™!.
Recently, this phenomenon has been discussed by Tanaka and Kinoshita [22]. Investiga-
tions by these authors have shown that decreasing temperature involves a displacement
of this minimum into the region of lower strain rates. The appearance of such a minimum
observed in this work at the strain rate # =~ 1 x 10~ *sec ™! can be so explained. This value
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of strain rate, i.e. # = 1 x 10”*sec ™! is equivalent to the value for tension or compression,
¢ =576x 10" % sec” !, where ¢ = /,/3.

From the point of view of the physical mechanisms of plastic deformation this dis-
placement of the flow stress minimum suggests that the structural changes accompanying
plastic deformation are to some extent equivalent at different temperatures, and strain
rates respectively. Such an effect is generally believed to be connected with diffusion
processes which take place during plastic deformation, referred to as strain aging.

The experimentally obtained surface T = 1(¢, 1) is shown in stereographic projection
in Fig. 3, over the strain range 0 < ¢ < 0-42, and within the strain rate limits
1x107%sec™! <7 < 1x10%sec”’. In the basal plane (¢,#) the strain rate histories
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F1G. 3. Stereographic projection of the surface T = (¢, 5). The dashed lines on the (¢, n) plane show
the strain rate histories n = 5(¢).

n = n{¢) for each strain hardening curve have been marked by dotted lines. Such surfaces
have been given previously by Krafft [10], and Krafft and Sullivan [11] for the strain
ratelsec™! < é < 3:10% sec”'andstrain0 < & < 0-08 ranges, also by Murch and Campbell
[15]for1 x 10 *sec™! < ¢ < 10sec™!,and 0 < ¢ < 0-05. However, all these surfaces were
obtained for mild steels of ~0-20% C [10], [11], and ~0-085%, C in reference [15], and
both for compression tests.
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It should be stressed that the surface shown in Fig. 3 is obtained under pure shear
conditions for technically pure iron of ~0-059%, C. Due to the lack of experimental results
describing such a surface for technically pure iron (~0-05%, C) under tension or com-
pression for the same range of strains and strain rates as in the present work, it is impossible
to compare strain rate behavior for these two stress systems over the entire range of strain
and strain rate. Fortunately, this comparison can be done for upper and lower yield
limits.

A basis for this comparison is the Huber-Mises yield condition, namely

¢ . _ N

o = /3t; z,—\/3, 1,—\/,3 (1)
The results of this comparison have been plotted in logarithmic coordinates and shown
in Fig. 4. The data of the following authors are used : Schofman [19], March and Campbell
[15]; Tanaka et al. [21], and finally Winlock [23]. The dashed lines refer to upper yield
limits, and the solid lines refer to lower ones. The present results suitably modified by use
of (1) are included.
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Fi1G. 4. Comparison of the upper and lower yield limits according to different references along with the
present results. The solid lines denote lower yield point stress at the ¢ ,/(¢), the dashed lines denote upper
yield stresses, the thick lines represent results from the pure shear experiments.
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The first conclusion which is immediately visible from Fig. 4, is that the strain rate
behavior of upper and lower yield limits are ascribable quantitatively by a definition of
strain rate sensitivity n of the form

_dloga

"= Jdlogé @
In terms of the double logarithmic scale, the strain rate sensitivity » i1s represented simply
as the slope of the experimentally obtained straight lines. It is remarkable that the strain
rate sensitivity definition n remains independent of stress system, i.e. is independent of the
condition of plasticity. If n remains constant for increasing strain rates, then for upper and
lower yield limits one can obtain respectively

oo = Cy™ and o, = Cyy™ 3)

All data obtained for n, and n,, from all sources (for the strain rate range 4 x 10 *sec ™! <
£ < 10% sec 1) have been tabulated in Table 1.

TABLE 1
Source Authors %C Kind of experiment no Ny
[15] Marsh and Campbell 0085 Compression 0-0697 0-0593
(1963) (hydraulic machine)
(191 Schofman 006  Tension 00487
(1964)
[21} Tanaka et al. 003 Compression 0-1240 00740
(1966) (modified Hopkinson
pressure bar)
(23] Winlock 006  Tension 0-0343 00288
(1953)
Present work 0-05 Torsion of tubular 0-0877 0-0702
specimens

Results shown in Fig. 1 and Table 1 indicate that a comparison between data from this
work and that of other authors could be done using the results obtained by Schofman [19],
and Winlock [23]. This suggestion arises from the fact of essentially equal lower yield
limits for data mentioned at the strain rate value of é ~ 1 x 10" *sec™!. Also, the carbon
content is of the same order.

The Murch and Campbell results were obtained for a mild steel of 0-0859%, carbon
content, for which the equivalent points lie somewhat higher, i.e. higher yield stresses.
Results reported by Tanaka and others have been obtained by means of a split Hopkinson
pressure bar technique, and for somewhat higher strain rates. Since, as it is well known, the
lateral inertia effects and the specimen face friction may lead to an apparent increase of the
strain rate sensitivity, so the values of n obtained may be higher than expected.

In the light of this comparison the conclusion which may be deduced is that the upper
and lower flow limits show higher strain rate sensitivity in the case of pure shear than for
tension and compression tests.

This conclusion is confirmed in the work by Lindholm and Yeakley [12] where the
strain rate sensitivity of a mild steel was investigated using simultaneous torsion and
tension, and only torsion or tension.
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Since the increase of the upper yield limit can be approximated by the formula
1o = C¥y', Ix107*sec™ <n < 10*sec™! 4)

where n, is the strain rate sensitivity for the upper yield limit and C¥ is a material constant,
the delay time ¢, may be easily evaluated. Itis noted that in the case of pure shear, C¥ depends
on C, from equation (4) according to the relation

CT — 3—(14—11())/2(31

For the purpose of evaluation of delay time ¢,, it was assumed that during loading the
average strain rate # is constant, for this case

¢0 = tdﬁ,
also, Hooke’s law holds
T = Gy,

where G is the shear modulus.
Taking into account the above relationships the delay time can be calculated in the form

C a
td = ;; for td S tc (5)
or
C
To = e (6)
where
1 CT 1/(1 —no)
=_——1, C=|=L
x ng (G"")

If t. is the time when the static upper yield point is reached at the strain rate 5, =1 x
10~ *sec™ !, then

to = o x 10*[sec], or ¢ = %’104 [sec].

Assuming a shear modulus G = 8-1 x 10® kg/mm? and using the experimental data the
upper yield point stress for n = 1 x 10~ *sec™! which is 1, = 10-6 kg/mm?, the time .
becomes . ~ 13-1 sec. Simultaneously, C,; and n, are also known from the experiments,
(see Fig. 4, C, = 43-95kg/mm, n, = 0-0877) and hence the constants Cf, C and o are
¥ = 24-2kg/mm?, C = 13-83 kg/mm?, « = 10-4. Thus, in the double logarithmic scale,

log 74 vs. log t,, the relationship (5) becomes a straight line with negative slope, crossing
the horizontal line log 7, = const at the point 1, = 10-6 kg/mm? for ¢, = 131 sec.

Usually, the relationship between stress and delay time is plotted with a linear stress
scale and time logarithmic. These two descriptions differ insignificantly.

A more exact comparision of these experimental results with other delay time data
could be carried out, using, for example, the review by Goldsmith [2].
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4. AN ANALYSIS OF ASSUMPTIONS USED IN THE
CONTINUUM THEORY OF PLASTICITY

Previous efforts to theoretically describe the dynamic plastic behavior of metals may
be divided into two categories. The first is an increasingly exact mathematical description
of the one dimensional case, using mostly a phenomenological approach. This approach
is closely connected with the phenomenon of elasto-plastic stress wave propagation in
bars. The second approach is connected with a generalization of complex stress system
descriptions. However, in this case the assumptions which are usually made considerably
accede experimental observations. Both approaches will be briefly discussed below.

At present, the most frequently used constitutive relation, for which the mechanical
equation of state concept is assumed, may be called the Malvern-Sokolovsky equation,
[13] and [20],

Eé¢ = 6+4g(o,¢) (7)

When the o — f(¢) argument is introduced, the g-function takes the following form

b = gulo—S@) o ¢ =7 taulo—f@) ®

where f(¢) denotes a *‘static’’ strain hardening curve, usually obtained at the *‘statical”
strain rate § ~ 1 x 10 "* sec ™, g, is an unspecified function of [¢ — f(¢)] obtainable from
experimental data. Equation (8) in the more convenient inverse form is

o= fe)+8u' (@ ®

Depending on the problem under consideration, different g,-functions are used, for
example, the following one is frequently assumed

. ¢
&= E+v1gmn[a—f(s)], (10)
where 7, is a material constant,
The Malvern—Sokolovsky equation, in a more simple case, i.e. the linear one,

¢ = Z+nlo—f)]
has been recently generalized in the work of Kelly [5], by its treatment as a functional
of the strain and strain rate, in which the delayed yield phenomenon was also taken into
consideration.

The first approach describing the rate-sensitive behavior of a material in complex
states of stress is reported in the work of Hohenemser and Prager [3]. This generalization
has been performed for the Bingham model. Using this basis and the Malvern-Sokolovsky
equation, further generalizations of the theory were given by Perzyna [16] and [17], taking
also into consideration the strain hardening phenomenon. The proposed relations have
the form

. 1, Sij . 1
€ = 2u5ij+7<q)(F)> RS €i = 3300, (1)
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where ¢;; and s;; denote deviators of strain and stress respectively, u and K are elastic
constants, v is a material constant, and

_ 0 for F<O
) = {(D(F) for F > 0.

F plays the role of an argument

F=yYVd_y
K

The x represents a strain hardening parameter, which, for the one dimensional case, is
identified with a “‘static” strain hardening curve. A little different definition of x was
introduced in the work of Kaliski [4]. The form of the function ®(F) is usually chosen to
be consistent with the real dynamic behavior of a particular metal.

For the one dimensional case, equation (11) can be reduced to

p‘~i‘+—2-7i<cb[i—1]> (12)
"TETBN @)

or
.62
&= E+;/7§}’<(D(F)>,
or inversely
. INIR)
a =.f(8p)[1+<l> ‘(‘—ZYLH (13)

Equation (14} shows an analogous shape as equation (10); it differs only due to the defini-
tion of the F parameter. In attempting to describe the real behavior of metals this difference
involves different y behavior than y/ as a function of a strain.

All studies of strain rate behavior in complex stress systems have been made under
the following assumptions:

{a) The Huber—Mises yield condition is satisfied,

(b) The isotropic strain hardening takes place at increasing strains,

(c) The influence of strain rate on yield condition is isotropic.
The existence of a higher strain rate sensitivity for pure shear than for tension or compres-
sion seems not to confirm the ¢ assumption. As was mentioned earlier, the higher strain
rate sensitivity in shear has been obtained by Lindholm and Yeakley [12]: this also supports
the above conclusion.

In order to evaluate relationship (11) the experimental results of Fig. | and Fig. 2 have
been used, and simultaneously the following ®(F) function is assumed

O(F) = F°. (14)
Thus, in pure shear
n=7yF" or F=py™,
and finally
T = Tau@)[1 + "], (15)
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where n, = 1/6, § = 1/y}/°. The material constant n,, is analogous to the strain rate sensi-
tivity n according to equation (2).

Values of F as a function of strain ¢, and strain rate 5, from the formula F = fn™ have
been shown in Fig. 5 and Fig. 6, using experimental data which were shown above. The
“‘statical” strain rate is assumed to be 5, = 1 x 10~ * sec™ *. It follows from Fig. 5 and Fig. 6
that the F argument depends very strongly upon strain rate as well as strain. The relation-
ship (15) implies a straight line with slope n, in the double logarithmic coordinates log F
vs. log n. To evaluate this, using the experimental data, plots of log F against log # for differ-
ent strain values have been made. The results for strains ¢, < ¢ < 0-40, and strain rates
1x1073sec™! <y < 1x10%sec™ ! are shown in Fig. 7. The solid curves obtained from
experimental data have been approximated by dashed straight lines for different strains
according to the formula F = fiy"*. Further, for each value of strain ¢, the values of § and
n, have been found; also, the equivalent material constants y, and é were obtained. The
results are shown in Table 2 and in Fig. 8.

These results lead to the conclusion that f is strongly dependent upon strain, while
on the contrary n, and J can be, to some extent, recognized as material constants. The
average values of n, and § are 1, = 0-187,and 6 = 533.
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Fi1G. 5. Experimentally obtained values of the argument F = t/t,, (¢) — | for different strain rates,

Tl @) assumed at 5 = [ x 107 % sec™ .
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F1G. 6. Experimentally obtained values of the F-argument for different strains.

In order to accurately describe the strain rate behavior of technically pure iron by a
relationship such as (14) and (135), the following modification for the one dimensional case
could be introduced, namely

F=pgm™ or n=7d$)F" (16)
Such a modification leads to the relationship
T = Taud )1 +BldI™), (17)

where f{¢) is a decreasing function of strain ; this function, obtained on the basis of experi-
mental data, is shown in Fig. 8. Thus the equation F = f»"* is a good approximation to
the strain rate behavior of the iron investigated only for constant values of strain.

It was ascertained above that the arguments of both equations (10) and (12) are different.
This fact is not important for the ideal plastic and strain rate sensitive behavior model, but
for the real behavior, when strain hardening takes place, this difference is a fundamental
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F1G. 7. Experimental values of the F-argument as a function of strain rate #, (shown in the double
logarithmic scale for different values of strain ¢). The dashed lines constitute successive descriptions
by the relationship (17).

TABLE 2
1 1

¢ n, 6= ;l: ﬂ V*E
ot 0-200 5-000 1.1780 0-4400
0015 0193 5-181 09074 1654
003 0195 5128 07320 4-952
0-05 0-190 5263 0-5857 1670
007 0-189 5291 0-4682 5545
015 0187 5348 0-3595 2377
025 0177 5650 02619 1940-0
0-40 0-169 5917 02043 12060-0

t ¢ denotes strain at the upper yield limit.

one. Then equation (10) leads to the relations

_ By .,
o —f(s)[1+f(£)e ] (18)

and simultaneously, equation (14) implies

o = f(e)[1 +B,™], (19)



546 JaNnusz KLEPACZKO

= n"p) B=8p)

0208, —i-0
Qi 701875

- \\ ;
'\W‘

—08

n* TO»G B

10—
008|—
| 1 |
0 010 020 030 040
P

F1G. 8. Observed changes of § and n, with increasing strains; the approximation used is F = ™.

thus
Bm = Bof(e).

Recalling that 8, is a sharply decreasing function of strain and at the same time the strain
hardening curve f(¢) is an increasing function of strain, 8, will be less likely to change with
increasing strain. Thus it may be suggested, when strain hardening is taken into considera-
tion, that a better approach is to use equation (8) with the argument ¢ — f(¢), than equation
(14) with F = [0 — f(¢)]/ f(¢). 1t also seems that the more reasonable description of the
dynamic strain hardening curves for mild steel and iron can be achieved accepting the
F parameter but using the strain rate sensitive and ideal plastic model instead of the analo-
gous strain hardening model.

The analysis performed is not exhaustive, but provides a certain amount of informa-
tion to explain the response of mild steel and iron to high strain rate deformation under
conditions of complex stress. It is necessary to perform further experimental work for the
purpose of verification of the assumptions which were introduced into the theory of visco-
plasticity for complex stresses. A more extensive discussion of the theories and assump-
tions which must be verified has been carried out in the work of Perzyna [18].
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5. CONCLUSIONS

The experimental results and analysis performed lead to the following conclusions:
(i) The torsional tests appear to be very useful for the investigation of strain hardening
curves under dynamic conditions. During such a test there are no lateral inertia
effects, and also the cross section of a deformed specimen remains constant. Thus,
at once, the true strain hardening curve can be recorded.

(i1) For all values of strains, i.e. ¢y < ¢ < 0-42, the minimum flow stress has been
experimentally observed, approximately at the strainrate n ~ 1 x 10 * sec ™',

(iii) At the value of strain rate n ~ 117 x 107 sec™! the disappearance of upper
yield point has been observed. For increasing strain rates, the increase of upper
yield stress is more intensive than the lower yield stress.

(iv) These investigations have shown also that over the strain rate region
1x107%sec™! < < 1x10%sec ! the stresses of upper and lower yield limits
can be well described by the strain rate sensitivity definition.

= dlogt
dlogn
(v) The comparison between strain rate behavior of technically pure iron obtained

by different investigators in tension or compression with the present experimental
results, obtained under conditions of pure shear, should lead to the conclusion
that the iron is more strain rate sensitive in pure shear than for tension or com-
pression. This conclusion implies also that the above assumption about isotropic
strain rate sensitivity used in the theory of visco-plasticity does not seem to be
exactly satisfied.

(vi) It seems reasonable, while the ¢ = y{¢(F)) concept of strain rate description is
used, to apply the model without considering strain hardening (the strain rate
sensitive ideal plastic model) rather than to include strain hardening phenomenon.
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A6cTpakT—B paboTe ONUCHIBAETCS IKCIIEPHMEHTAIBHOE HCCJIENOBAHHE MOBEACHHS CKOPOCTH Ae(popMaliiu
TEXHMYECKH YUCTOIO Kejle3a NPH YMCTOM caBure. Kak Xopoluo H3BecTHO, 60JIbIIMHCTBO 3KCIIEPHMEHTAIb-
HBIX PE3Y/bTATOB IIOJIy4€HO W3 MCIBITAHMH DACTAKEHUA WM CKATHS, TOI/A KaK HEMHOIO pe3y/ibTATOB Ha
MOBEHME CKOPOCTH AeOPMALMH UPH YHCTOM CABHIE.

KpomMe TOro, JMHaMHYECKHE MCTBITAHUS HA TOHKHUX TpyOvaThIX 00pa3uax yKa3bBalOT OTAEC/IbHBIE
MPEUMYILECTBA HAM HCCIIENOBAHHAMHU PACTAXKEHHA WIH CXKATUA.

INpenebperas atdexTaMu HICTOPHU CKOPOCTH A€POPMALIMHU N0J1y4AETCHA IKCIIEPUMEHTANIBHO TOBEPXHOCTH
T = (¢, n), rae  0603HANAET HANpPsHKEHUE CABUIA, ¢ M 7 ABJIAIOTCA COOTBETCTBEHHO Jedopmaumeii capura
M CKOpOCThIO Aedopmanuu. OmpenenseTcs NOBEPXHOCTH BBILIE CIEAYIOIIUX NPefenoB aehopMaluu u
ckopocta aepopmanun 0 < ¢ < 0,42: 1 x 107 %cex™! < 7 < 1.10%cex 1.

Kpome Toro, maercs cpaBreHue Mexnay 3ddekToM cKOpocTH AcPOpMALMH B HCMBITAHMAX YHCTOrO
CABMIa, PACTSXKEHHMS H CKATHA, DTO CpaBHEHHE JAeT BO3MOXHOCTb HOMYYMTD IIPEABAPUTEHbIE BETUYHMH bl
MOBENEHUS CKOPOCTH AeOPMaLMU JBYXOCHBIX HANPSKEHHBIX COCTOAHMER.

B KOHLIE KOHLOB, B CBETE€ 3THX HCNBITAHUR MCCIEAYIOTCH OCHOBHBIC MPEANOJIOKCHHS TEOPUH BS3KO-
NNACTUYHOCTH JJISl CJIOXKEHHBIX HATNPSKEHHBIX COCTOAHHIA,



